
CerealCodes II Editorial

CerealCodes Team

August 2023

1



1 World’s Hardest Math Problem

The statement tells us that 42 + 27 = 69 is a desirable integer. As such, 69− x will
always be a valid solution.

Time Complexity: O(1)

2



2 Palindromicity

Note that the number of differences when comparing a string to its reverse will always
be even. Therefore if k is odd, there will never be an answer. If k is even, the following
construction guarantees an answer: Fill the first k

2
positions of s with 0, and the rest

with 1. Then the first k
2
and last k

2
positions will be different, adding up to k different

positions total.

Time Complexity: O(n) per test case.

Time Complexity: O(a+ b+ c) per test case.

3



3 Reordering Red Pandas

Letmaxdist denote the maximum distance between any two pandas. Sincemaxdist =
pn − p1, if x is a panda with maxdist as one of its distances, x must lie at p1 or pn.

Knowing this, we can iterate over the pandas to find the desired panda x, and then
sort the remaining pandas in order of increasing distance to panda x, dix. For both
options p1 and pn for panda x’s position, we can try placing pandas in the sorted order
away from panda x, and check if the distances align with the assigned locations.

Time Complexity: O(n2) per test case.

4



4 Allen’s XOR(z)

For each bit b, let numb be the number of elements of a that have bit b set to 1. Notice
that the parity of numb remains constant after each operation, meaning that numb

can become either 0 or 1 after enough operations. Practically, as long as numb >= 2,
we can repeatedly choose i and j (1 ≤ i < j ≤ n) such that both ai and aj have the
b-th bit turned on, and perform an operation with x = 2b.

Once we reduce all numb to 0 or 1, we notice that it is possible to ”move” the b-th
bit from element ai to element aj by performing an operation with ai, aj, and x = 2b,
where ai has the b-th bit turned on, while aj doesn’t.

Now let M be the greatest bit such that numM = 1. We claim the answer is 2M .
Since the sum of powers of 2 up to 2M−1,

∑M−1
p=0 2p, is less than 2M , we may ”move”

the M -th bit to some element ai, and move all other bits b such that numb = 1 to
some other element aj (i ̸= j), which always works since n ≥ 2 is given. Then the
greatest element in a indeed becomes 2M .

Time Complexity: O(n logA) per test case, where A is the maximal value of ai.

5



5 Cascading Sums

Notice that if x ≥ y, then casc(x) ≥ casc(y) holds as well, where casc(a) means the
cascading sum of a. This is because if any prefix of x were less than that same prefix
of y, y > x would have to hold, which is a contradiction.

Solution 1: We can use binary search to figure out the largest x such that casc(x) ≤
n. Our answer would then be n− x. Calculating a number’s cascading sum can also
be done trivially, since we can iterate on all log x prefixes of x naively and sum them
up.

Time Complexity: O(q log2 n)

Solution 2: We actually don’t need to binary search for the largest x; it is possible
to build x digit by digit. Let’s iterate on the digits in x’s decimal representation from
most significant (largest) to least significant (smallest). If we use the largest number
possible for each digit while ensuring that casc(x) ≤ n, we will have our answer.

The contribution of some digit d with i digits to the right is
∑i

j=0 d ·10j. For example,
if we look at the hundreds digit of 1434, we get d = 4 and i = 2, which is a contribution
of 400 + 40 + 4 = 444. We can find the optimal d for each digit in constant time.

Time Complexity: O(q log n)

6



6 Cereal Trees III

We will call the ”trees” from the problem ”nodes” to avoid confusion.

Let us first solve the problem without considering the constraint of some node ti
having no cereal. We are asked to connect all nodes labeled from 1 . . . n with edges,
where the weight of an edge between trees a and b is a|b, and the sum of edge weights
is minimal.

It is both possible and optimal to use n − 1 edges to connect all n nodes. Now we
look at how to make our edges. An important property of the bitwise OR operator
is that for any number x, applying the OR operator to x with another number will
never decrease the value of x. In other words, the minimum value x can become after
OR operations is x. Also, connecting every node means we have to draw an edge
from each node, meaning each node x will contribute at least x weight to the total
sum. Since we are minimizing, we want to connect each node x to another node that
doesn’t increase x.

We use the following construction. For each node x ≥ 2, connect x to the lowest set
bit in its binary representation. For example, 7 = 111, so connect 7 to 1. Similarly,
10 = 1010, so connect 10 to 2. Thus we can see that every node will connect to a
power of 2. Nodes that are powers of two themselves are problems, because their
least set bit is equal to themselves. In order to minimize the edge weight connecting
these nodes, we connect them to node 1.

This construction will make sure that the entire tree is connected after n − 1 edges
and also minimizes the edge weight sum. Every node x ≥ 2 that is not a power of
two will contribute a weight of x, and every node x ≥ 2 that is a power of two will
contribute a weight of x+1. Therefore we can see the minimum sum of edge weights
will be

∑n
i=2 i+ log2(n) =

n(n+1)
2

− 1 + log2(n).

Now we deal with the extra condition of removing a node. Actually, not much has to
change. If the node ti removed is not a power of 2, you can subtract ti from the answer
because you can just ignore the weight of the edge that would have connected ti. If
the node ti is a power of 2, you can subtract ti +1 from the answer because the edge
would have contributed that weight to connect to node 1. As for the construction in
this case, every node x that is not a power of 2 has at least two set bits, so connect
each x to the lowest set bit that exists in the tree. Therefore the answer for each test
case is n(n+1)

2
− 1 + log2(n)− (ti + is tia power of 2).

Time Complexity: O(1) or O(log2(n)) per test case.

7



7 Mismatched Material

Notice that the only problematic positions in the given array a are 2 ≤ i ≤ n −
1 such that ai−1, ai+1 < ai, since that would mean bi, bi+1 < ai and thus ai ̸=
max(bi, bi+1). It is possible to fix all such positions with a single edit each by setting
ai := max(ai−1, ai+1), but can we do better? Notice that if we have another prob-
lematic position at i + 2 (ai+1, ai+3 < ai+2), then we may correct both i and i + 2
by setting ai+1 := max(ai, ai+2). So whenever we come across an “adjacent” pair of
problematic positions, we can save one edit.

Time Complexity: O(n) per test case.

8



8 Panda-monium

Because pandas meeting at the root node is allowed, we can treat the subtrees of
the root’s children as independent problems and combine the answers later for the
output.

Call a panda active if it has been freed. Within each of the root’s children’s subtrees,
we have one restriction: we can never have have two active pandas at the same depth.
Otherwise, those two pandas would eventually meet at some node which is not the
root and then fight. Therefore, at every point in time, there should be at most one
active panda at each depth in the subtree.

Now let’s think of a bound for the minimum number of seconds to place the pandas.
Ideally, we would free a panda at each depth in the first second, and then free one more
panda each second after that, because the number of “occupied” depths decreases by
at most 1 each second depending on whether a panda ascends to the root. Therefore,
if the maximum depth in the subtree is d and the number of nodes is m, then we can
free d pandas in the first second, and free the remaining m − d with an additional
m− d seconds, for a total of m− d+ 1 seconds.

We know the ideal number of seconds, but how do we actually find a way to free
pandas in m − d + 1 seconds? Consider the following strategy: sort the pandas in
increasing order of depth, and free in this order. That is, designate each panda its
own second, but if whenever we see two adjacent pandas with different depths, we
free them in the same second and subtract 1 from our total. Since we come across
d−1 such pairs, the number of seconds to place the pandas is m−(d−1) = m−d+1,
so it is optimal.

Time Complexity: O(n log n) per test case.

9



9 Asteroid Trek

Solution 1: Since Jesse and Jerry will make a combined total of n + 1 moves, and
each move will either be A or B, at each step we can try command B, check if it
works, and if it doesn’t, use command A instead. So now the difficult part is checking
whether or not a sequence of commands can be completed such that Jesse and Jerry
meet up. Note that when checking a possible sequence, we are no longer looking for
the lexicographic largest, but instead whether it is possible or not.

If, whenever we move Jesse, Jerry is on the smallest asteroid that he could have fea-
sibly reached, we will find a solution if it exists. Why? Well, if we have a sequence
of commands that does not satisfy the aforementioned condition, an exchange argu-
ment shows that, if Jerry were at the smallest reachable asteroid every step of the
way, Jesse’s moves would still all be valid.

To simulate this, we can just keep track of Jerry’s current position, the minimum
position that he can reach, and the furthest position he can reach. Then, after
moving Jesse one step, we will extend the furthest position that Jerry can reach and
update the minimum as we go. Once Jesse is on the largest asteroid in the belt, we
will just move Jerry left until they meet, and we will have found a good solution. If we
ever get to the point where Jerry is currently on the minimum position in reach and
Jesse is unable to move, it is impossible to construct a valid sequence of commands.

Time Complexity: O(n2) per test case.

Solution 2: Participants are not expected to know Dynamic Programming since it
is a Novice problem, but we include the DP solution here as well.

Let dp[i][j] = true if having Jesse at asteroid i and Jerry at asteroid j allows them
to eventually meet. Then we may start with setting dp[i][i] = true for all i, and then
transition as such, for all i < j:

dp[i][j] = si ≥ sj AND (dp[i+ 1][j] OR dp[i][j − 1])

After calculating the dp, we can build the sequence of instructions from the beginning,
always prioritizing moving Jerry left when possible. If Jesse is currently at position i
and Jerry is at position j, then we move Jerry to j− 1 if dp[i][j− 1] = true and move
Jesse to i+ 1 otherwise.

Time Complexity: O(n2) per test case.

10



10 Candy Machine

For node u, let pu be the parent of u, ku be the probability of that node being chosen
from its parent, and tu be the expected amount of money you need to spend to make
u dispense one time. Then, we have t1 = 1, and tu = tpu/ku (since the amount of
time it takes for (u, pu) to be taken is a geometric random variable). The answer for
node u is simply the sum of all tv for v on the path from u to the root.

Time complexity: O(n logMOD) per test case, where the logMOD comes from
taking modulo inverses.

11



11 Jack-o’-Lanterns

There are many correct Dynamic Programming solutions to this problem. We will
present a couple of them.

Solution 1: We would like to define a DP state that allows us to perform all 3
operations easily. Let dp[i][j][k] be the maximum tastiness Envy can achieve if he is
about to perform the ith operation, the rightmost illuminated pumpkin is at index
j, and k is a boolean flag of whether or not the last pumpkin was a carved jack-o’-
lantern.

Now both the eating and carving transitions are simple. If i is illuminated by j, we
can set dp[i + 1][j][0] := max(dp[i][j][k] + ai, dp[i + 1][j][0]) to simulate eating, and
dp[i + 1][i + bi][1] := max(dp[i][j][k], dp[i + 1][i + bi][1]) to simulate carving. Notice
that it is only useful to swap pumpkin i with pumpkin i−1 if pumpkin i−1 is carved
with a jack-o-lantern. Thus, swapping can also be done by extending j by 1 if k = 1
by setting dp[i + 1][j + 1][1] = max(dp[i + 1][j + 1][1], dp[i][j][k]). Our answer will
then be max(dp[n+ 1][n+ 1][0], dp[n+ 1][n+ 1][1]).

Time Complexity: O(n2) per test case.

Solution 2: Alternatively, since the usefulness of a carved pumpkin helps us only
“later” in the dp if we go left to right, this motivates us to simulate the process
backwards, from right to left, for a simpler dp. Let dp[i] denote the maximum tastiness
derived from pumpkins i . . . n, and let sum[i][j] be the sum of tastinesses of pumpkins
in the range i . . . j,

∑j
k=i ak. Then we may iterate over pumpkins from index i = n

to i = 1, and try using pumpkin i to illuminate as far to the right as pumpkin j for
each i ≤ j ≤ n. This allows us to eat pumpkins in the range [max(i+1, j − bi), j], so
the dp becomes:

dp[i] =
n

max
j=i

(sum[max(i+ 1, j − bi)][j]+ dp[j + 1])

Our answer is then simply dp[1].

Time Complexity: O(n2) per test case.

12



12 Pollination

Let’s first find how many squares are in a flower of size n. Ignoring the hole in the
middle, we can see that a flower is two pyramids of odd numbers, one with a base
of 2n + 1 and one with a base of 2n − 1. Since 1 + 3 + 5 + · · · + (2n − 1) = n2, the
total area of a flower is n2 + (n+ 1)2. To compensate for the hole in the middle, we
subtract one, getting our answer of 2(n)(n+ 1) squares.

We claim that a solution exists if 2(n)(n + 1) is divisible by 3. Clearly, if it is not
a multiple of 3, it is impossible to use tiles that have an area of 3 to tile the flower.
2(n)(n + 1) is divisible by 3 if n is 0, 2 (mod 3), and not divisible by 3 if n is 1
(mod 3).

Now we show a construction that will always tile the flower. First, we make a spiral
with a set of L tiles as shown below. In fact, this will leave a smaller untiled flower in
the middle! This new flower has a size of n−3, meaning the remainder upon dividing
the side by 3 is the same. This means we can repeat this process for the next smaller
flower that remains untiled in the large one. Diagrams are attached below of the first
cycle and the completed coloring.

There are many ways to implement this solution, one clean implementation involves
using complex numbers.

Time Complexity: O(n2) per test case.

13



Figure 1: Step one of Pollination construction

Figure 2: Finished Pollination construction

14



13 Friend Groups

For a pair of friends a, b, it is clear that the only edges they will impact are those
that lie on the path from a to b. It may seem like this problem requires Heavy Light
Decomposition with range set updates (although it can be solved this way, which is
why this problem was only used in the Intermediate division), but that is not the
case.

Notice that we want to know the minimum possible value of an edge, so we can
process all friend groups in order from 1 . . . n. This allows us to process each edge
once: if we are currently processing the path from ai to bi, we want to find all edges
on this path that don’t have a value assigned to them yet, and set them to i. This
can be done with a Disjoint Set Union data structure. Whenever we process an edge,
we join the two nodes (meaning we never look at this edge again) and keep track of
the node closest the root for each disjoint set, who will be the only node in the set
that hasn’t been joined with its parent.

To iterate on all unused edges from a to b, we will join the closest node to the root
in a’s disjoint set with its parent until we reach lowest common ancestor of a and b.
Then we will do the same to b until a and b are in the same Disjoint Set. To know
when to stop joining a’s disjoint set with its parent, we can perform an Euler Tour
on the tree and stop once a’s disjoint set is an ancestor of b.

Time Complexity: O(nα(n)) per test case.

15



14 Aquamist

We will solve the problem in reverse, consider the final arrangement and making the
initial one.

Consider each ”color” separately. We will solve each color to create a stack of just
that color and then exclude it from the stacks we are using (”solving” the color).
We will then mark all colors we are solving for currently as red and all other colors
indistinguishably as gray.

First, let’s try solving in the case of n = 3. Let’s make sure that two containers are
full and one is empty (we will call the empty one the third stack). If one stack is
completely red, we have finished, otherwise our goal will be to make the first stack
red only.

We will do this by repeatedly moving at least one red from the second stack to the
first stack (and one gray from the first to the second). Consider where the first gray
is on the first stack and where the first red is on the second stack. If they are closer
to the bottom of a stack, flip the stack upside down. now take the tops off of these
stacks and put them on the third stack until the first gray and first red are visible
(this cannot cause the 3rd stack to overflow because the tops are both smaller than
m/2). Now take the first gray and first red and swap them by putting the gray on
the third, the red on the first, and then the gray on second. now put the tops on
both stacks. This procedure swaps a pair of gray and red blocks. We can keep doing
this until all grays are on the second stack and all reds on the first.

Now we can extend this to solve for bigger values of n. First, make one arbitrary
stack completely empty. Next, ignore all stacks with just gray in them. Then, take
two stacks with at least some red in them both (if two dont exist, we are done). We
can arbitrarily label gray blocks as red until we have exactly M red in this subset of
two, and then also include the empty stack and, doing the n = 3 case on this subset.
This will make the number of gray-only stacks increase by 1. We should repeatedly
do this until n actually equals 3 when considering the non-gray-only stacks and then
solve the final case for the reds. This process will be performed for each color.

To speed this up we should label one stack that we will always consider “red” and
then merge reds into it as necessary, stopping to merge reds from a non-gray container
once we have made it gray. The flip operations can be done in 2m commands, and
everything else gets amortized to be under the bound.

Time Complexity: O(n2m+m2)

16



15 Roses

First notice that both Andre 3000 and Big Boi’s choices form a functional graph.
More specifically, since there cannot be cycles, both graphs are forests. If we have a
start node with edges that lead to an end node, that’s the same as the end node being
an ancestor of the start node in that forest. Now our problem becomes equivalent to
checking, on two forests, if there exists two nodes x and y such that x is an ancestor
of y on both forests.

Let’s call Andre 3000’s forest G1 and Big Boi’s forest G2. If we do a DFS on G1, when
we reach some node v, only ancestors of v are candidates for the pair of two nodes.
These ancestors are specifically everything on the DFS stack at this point in time.
Additionally the DFS stack only gets pushed to or popped from with every DFS call
and return. Because the list of possible candidates changes very little between each
operation on our DFS, we are motivated to use this to compute our answers. We
should only start our DFS from root nodes in the forest (nodes with indegree of 0),
because otherwise our DFS stack once we reach node v will not be the full list of
ancestors of v.

When we are performing a DFS on G1, we also want to consider the ancestors of v
on G2. If there is any node which is an ancestor of v on both forests, we have our
answer. We can imagine that any time we put a node onto our DFS stack for G1,
we ”activate” the respective node on G2. Likewise, when we pop it off the stack, we
”deactivate” the node on G2. We will only have a solution if there exists at least one
activated node on the path from the root to v on G2. Since we have reduced our
problem to doing fast (at most O(logN) for each of the O(N) nodes we visit) node
updates and path queries, we are motivated to flatten the tree with an Euler Tour
and use a Segment Tree for path queries.

Specifically, we will want to do node set updates (set the nodes start and end times
on the Segment Tree to 1 and −1 if activating or 0 and 0 if deactivating) and a path
sum query to check if the sum of the path from root to v is greater than 0 (which
means we have at least one activated node on this path).

Time Complexity: O(n log n)

17



16 Removing Subarrays

The important observation is that we only have to remove subarrays of size 2 or 3.
To motivate this consider removing some subarray of size greater than 3 with a single
operation. We can decompose that subarray into smaller ones of size 2 and 3 and
remove those instead for a less than or equal cost.

With this observation we can solve the problem with range dp. Let dp[l][r] be the
minimum cost to remove subarray [l, r] and infinity if it is impossible to remove the
subarray. Let’s consider the last operation we do.

Case 1: The last operation did not include both l and r. Then there must exist
some splitting point i in which [l...i] and [i+1...r] are independent in the sense that no
operation removes elements from both these intervals (think back to the fact that we
are removing subarrays). Thus, we can iterate over the splitting point to transition.

dp[l][r] = min(dp[l][r], min
l≤i<r

(dp[l][i] + dp[i+ 1][r]))

Case 2: The last operation was of size 3 and removes l, r, and some i (1 < i < r).
We can iterate over i to transition.

dp[l][r] = min(dp[l][r], min
l<i<r

(dp[l][i− 1] + dp[i+ 1][r] + 1))

Case 3: The last operation was of size 2 and removes exactly l and r. The transition
is as follows:

dp[l][r] = min(dp[l][r], dp[l + 1][r − 1])

This dp allows us to know which subarrays we can remove and the minimum cost of
removing each subarray. To find the minimum size array we can get and the minimum
cost, we must do another dp and use the calculated results from the range dp to help
us.

Let dp2[i] store the following two elements as a pair: the minimum size array we can
get if we only consider the first i elements (and pretend elements after i don’t exist)
and the minimum cost to do so.

To calculate dp2[i], loop over l and try removing [l...i] for a cost of dp[l][i]. We must
also consider the case in which we don’t remove i.

18



dp2[i] = min({dp2[i− 1].first + 1, dp2[i− 1].second},
min
1≤l<i

dp[l][i] ̸=∞

({dp2[l − 1].first, dp2[l − 1].second + dp[l][i]}))

Time Complexity: O(n3)

19



17 Mark and Add

We can do square root decomposition on k.

k >
√
n: There will be at most

√
n contiguous segments that we add x to. One way

to get these
√
n contiguous segments is to keep track of adjacent marked elements

that are a distance of more than
√
n away.

k ≤
√
n: Let’s look at how we would handle updates of k, x naively. For each marked

element i, we consider the nearest marked element to the left and right which we can
call l and r. Then we add x to the interval [max (i− k, l+i

2
+ 1),min (i+ k, i+r

2
)]. To

do this efficiently, we can keep track of these intervals for each k = 1, 2, ...
√
n in

constant time for each k. For some update k, x, we need to globally add x to the set
of intervals belonging to k which can be done lazily. Specifically, for each k we keep
a global variable storing the number we must add to all intervals belonging to k and
we also tag along an offset to each interval. When a new interval is created, its offset
is set to the negation of its global addition constant. So the true value that we must
add to some interval is its global addition constant plus its offset.

Time Complexity: O(q
√
n)

20



18 Vacation II

First, suppose that Ariel cannot be deported. For 1 ≤ x ≤ n et Ex be the event that

Ariel visits city x. Also, let bx be
n∑

i=x

ai.

We then have the following claim: P [Ex] =
ax
bx
.

Proof: suppose that Ariel is in state Y if he is currently at one of cities 0 through
x− 1, and in state Z if he is currently at one of cities x through n. Ariel will start his
trip at state Y and end at state Z. Consider the moment Ariel transitions to state Z;
if Ariel flies to city x, then Ex takes place, but if Ariel flies to city w > x, then Ex

does not take place. We then have

P (Ex) =
1

1 +
n∑

i=x+1

ai
ax

=
ax

ax +
n∑

i=x+1

ai

=
ax
bx

Moreover, via the above proof we have that, for any w ̸= x, Ew and Ex are indepen-
dent, since P [Ex] does not depend on the cities Ariel visits in state Y.

Now, consider the full problem. If cities l through r are at war, for each k /∈ [l, r], the
contribution of Ek to the answer is P [Ek]. The contribution of the entire range [l, r]
is

r∑
i=l

∏
l≤j≤r,j ̸=i

P [¬Ej]P [Ei]

r∑
i=l

∏
l≤j≤r,j ̸=i

P [¬Ej]P [Ei] +
r∏

i=l

P [¬Ei]
,

which is the probability that a trip visits [l, r] given the trip is successful.

When both the numerator and the denominator are divided by
r∏

i=l

P [¬Ei], the ex-

pression simplifies to
r∑

i=l

P [Ei]
P [¬Ei]

r∑
i=l

P [Ei]
P [¬Ei]

+ 1
.

Using prefix sums on P [Ei] and
P [Ei]
P [¬Ei]

, we can sum the contribution of every city in

O(logMOD) per query with O(n logMOD) precomputation.

Time complexity: O(n logMOD + q logMOD) per test case.

21



19 Cereal Bushes

Because we are expected to be able to create a grid for every value of k within
0 ≤ k ≤ 1018, we might be motivated to make the construction of our grid analog to
the construction of a number in some base b.

For example, in a (2 x 2) square of open cells, there are 2 paths from the top left cell
to the bottom right cell. If we then attach another (2 x 2) square of open cells to the
bottom right of this one so that their overlap is 1 cell, then there are 2 ∗ 2 = 4 paths
from the top left cell to the bottom right. If we continue chaining (2 x 2) squares of
open cells in this manner, each one multiples the number of paths through the grid
by 2.

This might motivate us to write k in binary and then create a chain of i (2 x 2)
squares of open cells for every bit i turned on in k. Unfortunately, we soon find that
such constructions are impossible to fit within a (64 x 64) grid.

Plan B... Let’s try base 10. A (3 x 4) rectangle of open cells leads exactly 10 paths
from its top left cell to its bottom right. A chain of 18 of these rectangles gets us to
1018, and has a bounding rectangle of size (37 x 55). Now we can build k. Each digit
in k represents a∗10p where 0 ≤ a ≤ 9 and 0 ≤ p ≤ 18. So for each digit in k, we can
lead exactly a paths from the top left cell of the grid into the top left cell of the p-th
to-last (3 x 4) rectangle in our chain. The particulars are of course, implementation
dependent, but here is one example of this construction:

22



20 Purchasing Cereal

First, let’s consider the case where the tree is just a line. In this case, we can consider
the minimum cost for every amount of cereal that is purchased. We observe that
this reduces to a piecewise convex function, where each piece is a quadratic function.
When we take a flight, we are essentially adding ax2 + b to every segment of this
piecewise function, and when we consider buying cereal at a node, we are cutting the
function off whenever the distance is greater than c, and adding a new segment up to
infinity that is a line with slope c. Now, when we query for the answer, we can answer
each query as we reach the node, and then we just need to binary search within this
function to figure out which segment it is in, and then answer the query. The time
complexity here is O(n log n + q log n), however the important thing to note is that
this is actually amortised: the solution requires deleting all of the useless nodes, which
breaks a rollback/persistent solution on a tree.

Now, we consider putting it on a tree. We can store a similar data structure on the
tree. However, to get around the amortization aspect of the data structure, we can
use another trick. To get around deleting all of the irrelevant segments of the data
structure, we can think of storing a pointer to the last segment that is still relevant.
By doing this, we have converted this piecewise convex hull into a tree-like data
structure. This motivates using binary lifting: if we consider the last segment that
is still relevant to be the parent of the new node, then we can store the 2kth parent
for every node and every k. Now, when we query a node, we can use this structure
to binary search for the right segment: if the 2kth parent’s segment starts after the
query point, we can recurse onto that parent, otherwise we go down to the 2k−1th
parent. With this, each query takes O(log n) time with O(n log n) preprocessing, so
the total time complexity is O(n log n+ q log n).

23



21 Magical Zoo

Root the tree. Split each path into 3 parts:

1. Start to LCA(start, end)

2. LCA(start, end) to the first occurrence of a feeding station on the path to end

3. First occurrence of feeding station to end

For the path of first type and second type, we can just keep track of counts of each
color, and use small to large merging. When we reach a feeding station, we just
merge all counts into one. For each path, to keep track of counts, we add one to
its original color at its bottom endpoint. Then, at its top endpoint, we check which
color it would become (with binary lifting) and subtract one. Note that the ”original
color” for type one path is 0, while the ”original color” for type 2 paths is the color
the panda becomes after reaching the LCA. For paths of type 3, we merge all of them
into a single count variable, representing the first feeding station you reach if you
keep moving up towards your parent.

Note that small to large merging with a map is O(n log2 n), which would probably
TLE. Therefore, implementations should either use a hash table or a shared global
array.

Time Complexity: O(n log n)

24



22 Date

The condition for node a to be reachable from node b on day d is that all nodes on
the path from a to b have a an opening time that divides d. Another way to put
this condition is that the least common multiple of all opening times of nodes on the
path from a to b must divide d. Furthermore, if node a can reach node b and node a
can reach another node c, then node b can also reach node c. Thus, we can move are
starting node to any node that it can reach on the given day without changing the
answer.

With these observations, we can apply centroid decomposition to solve the problem.
Lets first assume that Kana will not block any nodes. To solve this subproblem,
we can find the highest ancestor of the starting node on the centroid tree that is
reachable on day d, call this node p. Then, the answer is just the sum of all values
on nodes in p’s subtree of the centroid tree that can reach p. We can easily store
this by finding the least common multiple of all opening times on the path from
each node to p and then checking all divisors of d to find which nodes are reachable.
Finding the least common multiple for each node can be done during the centroid
decomposition. To find the answer even with Kana blocking a node, we can subtract
out a subtree’s sum of value using prefix sums and a Euler tour traversal found
during the centroid decomposition. Note to account for Kana’s blocked node when
finding the highest reachable ancestor. Implementation can be done offline either
using a hash map or with some careful implementation using prefix sums for a time
of O(maximum # of divisors of d) per query. However, using a time complexity of
O(maximum # of divisors of d·log n) per query will also pass and may result in easier
implementation.

25


